Coupled systems of Riemann-Liouville fractional differential equations with Hadamard fractional integral boundary conditions
نویسندگان
چکیده
منابع مشابه
Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
* Correspondence: [email protected] Department of Mathematics, Faculty of Science, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia Full list of author information is available at the end of the article Abstract This article investigates a boundary value problem of Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary condi...
متن کاملExtremal solutions for p-Laplacian fractional differential systems involving the Riemann-Liouville integral boundary conditions
where D , D , and D are the standard Riemann-Liouville fractional derivatives, I and I are the Riemann-Liouville fractional integrals, and 0 < γ < 1 < β < 2 < α < 3, ν,ω > 0, 0 < η, ξ < 1, k ∈R, f ∈ C([0, 1]×R×R,R), g ∈ C([0, 1]×R,R). The p-Laplacian operator is defined as φp(t) = |t|p–2t, p > 1, and (φp) = φq, 1 p + 1 q = 1. The study of boundary value problems in the setting of fractional cal...
متن کاملPhysical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives
On a series of examples from the field of viscoelasticity we demonstrate that it is possible to attribute physical meaning to initial conditions expressed in terms of Riemann-Liouville fractional derivatives, and that it is possible to obtain initial values for such initial conditions by appropriate measurements or observations.
متن کاملNonlinear fractional differential equations with integral boundary value conditions
and Applied Analysis 3 Lemma 2.5. Let α > 0 then
متن کاملTwin solutions to semipositone boundary value problems for fractional differential equations with coupled integral boundary conditions
This paper investigates the existence of at least two positive solutions for the following high-order fractional semipositone boundary value problem (SBVP, for short) with coupled integral boundary value conditions: D0+u(t) + λf(t,u(t), v(t)) = 0, t ∈ (0, 1), D0+v(t) + λg(t,u(t), v(t)) = 0, t ∈ (0, 1), u(j)(0) = v(j)(0) = 0, j = 0, 1, 2, · · · ,n− 2, Dα−1 0+ u(1) = λ1 ∫η1 0 v(t)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Sciences and Applications
سال: 2016
ISSN: 2008-1901
DOI: 10.22436/jnsa.009.01.28